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Abstract

The existence of maximally supersymmetric solutions to heterotic string the-

ory that are not toroidal compactifications of the ten-dimensional superstring

is established. We construct an exact fermionic realization of an N=1 super-

symmetric string theory in D=8 with non-simply-laced gauge group Sp(20).

Toroidal compactification to six and four dimensions gives maximally extended

supersymmetric theories with reduced rank (4, 12) and (6, 14) respectively.
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Finiteness is a robust property of the perturbative amplitudes of the known su-

perstring theories. N=4 supersymmetric Yang-Mills theory is known to be finite in

four dimensions [1], and there is growing evidence that the theory exhibits an ex-

tension of Olive-Montonen strong-weak coupling duality known as S-duality[2] [3]. A

generalization of the Olive-Montonen duality of N=4 theories has also been identi-

fied in N=1 supersymmetric Yang-Mills theory [4]. In string theory, conjectures for

S-duality have mostly been explored in the context of toroidal compactifications of

the ten-dimensional heterotic string to spacetime dimensions D<10 [5].

It would be helpful to have insight into the generic moduli space, and the generic

duality group, of such maximally supersymmetric string theories. We will therefore

consider the possibility of exact solutions to string theory beyond those obtained

by dimensional reduction from a ten-dimensional superstring. These solutions are

exact in the sigma model (α′) expansion but are perturbative in the string coupling

constant. To be specific, we will construct solutions to heterotic string theory, i.e.,

with (NR, NL)=(2, 0) superconformal invariance on the world-sheet. Our construction

is, however, quite general and the conclusions can be adapted to solutions of any closed

string theory in any spacetime dimension.

Toroidal compactification of the ten-dimensional N=1 heterotic string to six (four)

dimensions results in a low-energy effective N=2 (N=4) supergravity coupled to 20

(22) abelian vector multiplets, giving a total of 24 (28) abelian vector gauge fields with

gauge group (U(1))24 ((U(1))28), respectively. Four (six) of these abelian multiplets

are contained within theN=2 (N=4) supergravity multiplets. At enhanced symmetry

points in the moduli space the abelian group (U(1))20 ((U(1))22) is enlarged to a

simply-laced group of rank 20 (22). The low energy field theory limit of such a solution

has maximally extended spacetime supersymmetry. Since all of the elementary scalars

appear in the adjoint representation of the gauge group, symmetry breaking via the

Higgs mechanism is adequate in describing the moduli space of vacua with a fixed

number of abelian multiplets.

In this work we show that there exist maximally supersymmetric vacua with four,

six, and eight-dimensional Lorentz invariance that are not obtained by toroidal com-

pactification of a ten-dimensional heterotic string. The total number of abelian vector

multiplets in the four-dimensional theory can be reduced to just six, namely, those

contained within the N=4 supersymmetry algebra. This is consistent with known

theorems on the world-sheet realizations of extended spacetime supersymmetry in
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string theory[11]. In the world-sheet description of an N=4 supersymmetric solution

of the heterotic string in four dimensions, the internal right moving superconformal

field theory of central charge cR=9 is required to be composed of nine free bosons. A

reduction of the rank of the low-energy gauge group in an N=4 solution implies that

the internal left-moving conformal field theory of central charge cL=22 is not entirely

composed of free bosons. This is unlike the 4D toroidal compactifications described

by Narain [9] where both right and left moving conformal field theories are free boson

theories.

As a consequence, it will also be possible to realize non-simply-laced gauge sym-

metry consistent with the maximally extended supersymmetries. We will construct

such solutions using real fermionization [12]. Exact solutions to heterotic string the-

ory obtained in this construction are examples of rational (2, 0) superconformal field

theories, where the underlying chiral algebras also have a world-sheet fermionic re-

alization. In order to have an unambiguous identification of the vertex operator

algebra in the fermionic construction, it is essential to have explicit knowledge of the

correlators of the real fermion conformal field theories [13].

Eliminating longitudinal and time-like modes, the number of transverse degrees of

freedom describing a vacuum with D-dimensional Lorentz invariance is (cR, cL)=(3
2
·

(D − 2),D − 2)+ (cintR , cintL ). In this class of exact solutions, the internal degrees of

freedom have an equivalent world-sheet fermionic realization with (3·(10−D), 2·(26−
D)) Majorana-Weyl fermions. The world-sheet fermionic realization is convenient,

both as an explicit calculational tool and because it allows us to construct, consistent

with finiteness and anomaly cancellation, an exact solution to string theory which

embeds a specified low-energy matter content.

We restrict ourselves to fermionic realizations where the world-sheet fermions are

Majorana-Weyl, with periodic or anti-periodic boundary conditions only. All of the

right-moving world-sheet fermions will be paired into Weyl fermions, or equivalently

free bosons, as required by the extended spacetime supersymmetry. A free boson

conformal field theory implies, with no loss of generality, the existence of an abelian

current in the right-moving superconformal field theory. In maximally supersymmet-

ric solutions the allowed right-moving chiral algebras are, therefore, restricted to level

one simply-laced affine Lie algebras [9] [11]. This follows from the fact that for a Lie

algebra with roots of equal length, the central charge of the level one realization also

equals the rank of the algebra, i.e., the number of abelian currents.
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A free fermionic realization with n Weyl (complex) fermions exists for any of the

following affine Lie algebras: SO(2n), U(n), and E8 (for n=8), in addition to the

abelian algebra (U(1))n. In toroidal compactifications that have an equivalent free

fermionic realization these properties also extend to the allowed left-moving chiral

algebras and, hence, to the observed non-abelian gauge symmetry in these solutions.

Incorporating real fermion world-sheet fields in the left-moving internal conformal

field theory will enable us to construct maximally supersymmetric solutions that

embed non-simply-laced gauge symmetry, i.e., gauge groups with roots of unequal

length. Such solutions necessarily lie in a moduli space where the gauge group has

rank < 28. This is evident from the formula for the central charge of an affine Lie

algebra:

c =
k Dim(G)

k + h̃
(1)

where the dual Coxeter number, h̃, of the non-simply-laced algebras, SO(2n + 1),

Sp(2n), G2 and F4 are, respectively, 2n− 1, n+ 1, 4, and 9. Note that the dimension

of the dual algebras SO(2n+1) and Sp(2n) are identical, given by Dim(G)=n(2n+1).

However, unlike the simply-laced algebras, the central charge does not equal the rank

of the group even at level k=1, and does not, in fact, coincide for the algebra and its

dual. Real fermion realizations exist for all of the non-simply-laced affine algebras.

Extending a world-sheet fermionic realization of the generators of the affine algebra

to a (2, 0) superconformal field theory that is an exact solution to heterotic string

theory, however, requires consistency with modular invariance of the one-loop vacuum

amplitude and with world-sheet supersymmetry [13]. These conditions can be quite

restrictive and, in fact, preclude N=1 supersymmetric solutions in ten spacetime

dimensions with non-simply-laced gauge symmetry.

Now consider the possibility of non-simply-laced gauge symmetry in D<10. For

example, an affine realization of the rank ten algebra Sp(20) at level one requires

central charge c=35
2

. Appending a single real fermion with c= 1
2

gives c=18, making

this a plausible candidate for the gauge group of an N=1 spacetime supersymmetric

solution in D=8. It is not difficult to verify the existence of such a solution using its

fermionic realization.

We will adopt the notation of [12][13]. The tree level spectrum is described by the

one-loop vacuum amplitude, which sums over sectors labelled by the associated spin

structure of the world-sheet fermions. The N=1 spacetime supersymmetry charges
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are embedded in the spin-structure of eight right-moving Majorana-Weyl fermions,

which we will label ψµ, µ=1, · · ·, 6, ψ7, and ψ10. The spin-3
2

generator of the (1, 0)

world-sheet supersymmetry is the operator

TF (z̄) = i
6∑

µ=1

ψµ∂z̄X
µ + i

∑

k=2,3

ψ3k+1ψ3k+2ψ3k+3 (2)

The first six right-movers therefore carry a (transverse) spacetime index. In sectors

contributing spacetime bosonic and fermionic components of an N=1 supermultiplet,

these eight fermions are, respectively, Neveu-Schwarz and Ramond. In particular

the untwisted sector, U , in which all of the world-sheet fermions are Neveu-Schwarz,

contributes the bosonic components of the N=1 supergravity multiplet in eight di-

mensions. It also contributes two massless abelian multiplets, each associated with

an internal right-moving Weyl fermion: ψ8 + iψ11, and ψ9 + iψ12. Thus the full gauge

group of this model will be Sp(20)×(U(1))2. Note that the Ramond vacuum of the

right-moving fermions ψ7, ψ10 is constrained by modular invariance to be aligned

with that of the first six right-movers. Thus, there cannot exist modular invariant

solutions to heterotic string theory with extended spacetime supersymmetry in D=8,

as expected from the viewpoint of the low-energy effective Lagrangian.

The remaining massless spectrum is arranged into D=8 N=1 Yang-Mills super-

multiplets, each containing 6 spacetime vector components, 8 spinor components,

and 2 scalar components [14]. The sector-wise decomposition of the 210 states in the

adjoint representation of Sp(20) is most easily described by the regular embedding:

Sp(20) ⊃ (SO(5))5 ⊃ (SO(4))5 ∼ (SU(2))10 (3)

The untwisted sector, U , contributes states corresponding to all 30 long roots, and a

subset (20) of the short roots of Sp(20). These states transform, respectively, in the

adjoint (10 copies of a 3) and the spinor (10 copies of a doublet) representation of

its (SU(2))10 sub-group. The states are identified by fermionic charge: the roots and

weights of the rank ten sub-group are embedded in the fermionic charge of ten Weyl

fermions. In the fermionic construction these are obtained by pairing 20 Majorana-

Weyl left-movers, ψ2l+1(z) + iψ2l+2(z)=λl(z), l=0, · · · 9.

The remaining 16 left-moving Majorana-Weyl fermions are real fermions. The

vertex operator construction for an SO(2n+ 1) algebra requires a single real fermion,

in addition to n Weyl fermions. The long-root lattice of SO(2n + 1) coincides with
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the root-lattice of SO(2n), ΛL(Bn)=Dn. Thus the n·(2n−1) Majorana-Weyl fermion

bilinears are the currents corresponding to long roots, while those corresponding to the

short roots are the 2n bilinears containing the single real fermion. In this example, of

the 20·19
2

Neveu-Schwarz fermion bilinear currents contributed by the untwisted sector

only 5·5·4
2

remain after GSO projection from four twisted sectors, T1 · · · T4, in which

some of the fermions are Ramond. The untwisted sector therefore contributes a total

of 400 states: the eight bosonic components of an N=1 supermultiplet transforming

in the adjoint representation of the non-simply-laced group (SO(5))5.

Extension of this vertex operator construction to a symplectic current algebra re-

quires conformal dimension (hR, hL)=(0, 1) operators corresponding to the additional

short roots. These are contributed by the twisted sectors. The currents are composite

operators constructed out of sixteen twist fields, i.e., dimension (0, 1
16

) operators in

the Majorana-Weyl fermion field theory.

The twisted sectors, Ti, were chosen so as to generate the necessary projection on

the untwisted sector. They will simultaenously determine the internal right-moving

chiral algebra: in this solution, the four internal right-moving fermions, ψ8, ψ9, ψ11,

and ψ12, are either all Neveu-Schwarz, or all Ramond, in every sector of the Hilbert

space. Thus the underlying right-moving chiral algebra is SO(4). Possible twists are,

of course, subject to constraints from modular invariance and world-sheet supersym-

metry. Given a set of valid Ti, modular invariance of the one-loop vacuum amplitude

automatically generates additional twisted sectors in the Hilbert space. Thus, in this

example, the Ti + Tj, i6=j, also contribute massless states in the spectrum. Each of

the ten twisted sectors contributes 128 states: 8 bosonic components of an N=1 su-

permultiplet transforming in the 16 dimensional spinor representation of an (SU(2))4

sub-group. Sp(20) has ten distinct (SU(2))4 sub-groups, each corresponding to a

different twisted sector. Combining the 400 untwisted sector states with these 1280

states gives all 8·210 bosonic components of an N=1 supermultiplet transforming in

the adjoint representation of Sp(20).

It is straightforward to construct the twisted sector vertex operator corresponding

to a given weight. We will use the bosonic realization for the corresponding free field

vertex operator. A state transforming as a spinor weight, α, of (SU(2))4 corresponds

to a dimension (0, 1
2
) operator, jfree(z), obtained by bosonization:

λ†lλl ↔ ∂φl jfree(z) = Ĉ(α) eiα·φ (4)
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where α · α=1, l=0, · · · 9, and the Ĉ(α) are suitable cocycle operators. This free

field vertex operator must be dressed by four pseudo-Weyl fermion spin fields, σ±l ,

l = 1, · · · 4, so as to give a current. These spin fields are identified by pseudo-

complexifying, i.e., pairing, the real fermions in a twisted sector [13]. Thus:

Jijkl(z) = jfree(z)
(
σ+
i σ

+
j σ

+
k σ

+
l + σ−i σ

−
j σ
−
k σ
−
l

)
(5)

where i 6= j 6= k 6= l, giving a dimension (0, 1) twisted sector current. Verification of

the vertex operator algebra for Sp(20) is now straightforward.

This completes the discussion of the massless spectrum of the N=1 supersymmetric

Sp(20) heterotic string in eight dimensions. Anomaly cancellation is particularly

simple in this theory: there is no gravitational anomaly in D=8 dimensions [15], the

right-moving U(1)’s are non-anomalous, and Sp(20) is an anomaly-free gauge group.

Compactification on a torus will give anomaly-free theories with maximally extended

spacetime supersymmetry in lower dimensions. Quite generally, compactification on

an (n, n) dimensional Dn lattice has an equivalent fermionic realization in terms

of (n, n) Weyl fermions. Recall that the fermionic description of the Sp(20) string

theory contained an extra left-moving real fermion. Appending this real fermion to

the Weyl fermion realization of the SO(2n) current algebra extends it to a realization

of SO(2n+1). It is straightforward to verify, as we have done, the existence of an N=2

Sp(20)×SO(5) solution in six dimensions and an N=4 Sp(20)×SO(9) solution in four

dimensions with fermionic realizations. Thus toroidal compactification of the eight-

dimensional N=1 Sp(20) heterotic string gives an N=4 theory in four dimensions with

only twenty abelian vector multiplets, or rank (6, 14), at generic points in the moduli

space. The target space duality group clearly has an O(4, 4;Z)\O(4, 4)/(O(4)×O(4))

subgroup corresponding to the moduli space of the torus, but it will be extended by

the background modes of the D=8 supergravity-Yang-Mills theory [9].

The moduli spaces of six-dimensional solutions are of particular interest in ex-

ploring string-string duality. The conjectured S-duality of the heterotic string com-

pactified on a six-dimensional torus has been shown to follow as a consequence of

target space T-duality of the type IIA string theory: compactified on the K3 surface,

this string theory is dual to the heterotic string compactified on a four-dimensional

torus [6] [7] [8]. As described above, toroidal compactification of the ten-dimensional

E8×E8 string and the eight-dimensional Sp(20) string gives rank 24 and rank 16 mod-

uli spaces, respectively. Twisting the Sp(20)×SO(5) solution gives a solution with
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exceptional gauge symmetry: F4×F4×Sp(8). It is likely that these solutions belong

to the same moduli space. We have also constructed a new family of N=2 solutions

with 12 abelian multiplets at generic points in the moduli space. This moduli space

contains enhanced symmetry points with higher level realizations of the gauge sym-

metry: SU(9)2, (SU(5)2)2, and (SU(3)2)4. Twisting the (SU(5)2)2 solution gives a

solution with the orthogonal gauge group (SO(9)2)2.

We have constructed fermionic realizations of a large range of four-dimensional

N=4 and six-dimensional N=2 supersymmetric solutions to the heterotic string with

semi-simple groups of varying rank, containing both simply-laced and non-simply-

laced factors, and with part or all of the gauge symmetry realized at higher level.

It should be stressed that four-dimensional N=4 supersymmetry need not always

arise via toroidal compactification from a higher dimensional theory. The clearest

evidence for this is the existence of an N=4 four-dimensional solution where the gauge

symmetry is reduced to the minimum consistent with the world-sheet supersymmetry

constraints. Its fermionic realization uses a spin structure block of 44 left-moving real

fermions. The number of abelian vector multiplets in this N=4 theory is just six.

The development of fermionization techniques [12][13] has enabled the efficient

sampling of new classes of exact solutions to string theory. It is important to focus

on those aspects of the solutions that have generic implications for our understand-

ing of string theory. We would like to stress that there exist additional maximally

supersymmetric solutions, in any space-time dimension, which do not have fermionic

realizations. A simple example in D=4 is toroidal compactification with gauge group

(SU(3))3×E8×E8. The particular choices of affine Lie group, rank, or Kac-Moody

level, obtained in the fermionic construction should not be emphasized. On the other

hand the existence of maximally supersymmetric theories with distinct target space

duality groups, and the fact that non-simply-laced and simply-laced gauge groups

enter on an equal footing, are generic observations relevant for further study.

In concluding, we note that the construction of alternative four-dimensional N=4

string theories is a useful step towards constructing simpler pedagogical models for

studying the low energy physics of string theory. Any four-dimensional N=1 super-

symmetric solution to heterotic string theory inherits some of its structure from a

parent N=4 solution. Four dimensional N=4 heterotic string theories of lower rank

are a more appealing starting point for constructing pedagogical N=1 models via

twisting, because the models will inherit a reduced massless particle spectrum. In
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toroidal compactifications the massive modes of the string spectrum were completely

determined by the low energy symmetries: extended supergravity and gauge symme-

try. This is no longer true in the maximally supersymmetric solutions constructed

in this paper. The mechanism by which finiteness is achieved in these solutions does

not rest wholly upon the finiteness of the low-energy field theory limit. Twisting such

solutions to construct pedagogical N=1 models with chiral matter will teach us about

new, and intrinsically stringy, mechanisms for achieving finiteness.
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